Neuroanatomy and Behaviour

PDF
XML

Keywords

Adolescence
Dopamine
Insula
Methamphetamine
Sex differences

How to Cite

Cullity, E. R., Guérin, A. A., Madsen, H. B., Perry, C. J., & Kim, J. H. (2021). Insular cortex dopamine 1 and 2 receptors in methamphetamine conditioned place preference and aversion: Age and sex differences. Neuroanatomy and Behaviour, 3, e24. https://doi.org/10.35430/nab.2021.e24

Abstract

Rodent studies have proposed that adolescent susceptibility to substance use is at least partly due to adolescents experiencing reduced aversive effects of drugs compared to adults. We thus investigated methamphetamine (meth) conditioned place preference/aversion (CPP/CPA) in adolescent and adult mice in both sexes using a high dose of meth (3 mg/kg) or saline as controls. Mice tagged with green-fluorescent protein (GFP) at Drd1a or Drd2 were used so that dopamine receptor 1 (D1) and 2 (D2) expression within the insular cortex (insula) could be quantified. There are sex differences in how the density of D1+ and D2+ cells in the insula changes across adolescence that may be related to drug-seeking behaviors. Immunohistochemistry followed by stereology were used to quantify the density of cells with c-Fos and/or GFP in the insula. Unexpectedly, mice showed huge variability in behaviors including CPA, CPP, or no preference or aversion. Females were less likely to show CPP compared to males, but no age differences in behavior were observed. Conditioning with meth increased the number of D2 + cells co-labelled with c-Fos in adults but not in adolescents. D1:D2 ratio also sex- and age-dependently changed due to meth compared to saline. These findings suggest that reduced aversion to meth is unlikely an explanation for adolescent vulnerability to meth use. Sex- and age-specific expressions of insula D1 and D2 are changed by meth injections, which has implications for subsequent meth use.

https://doi.org/10.35430/nab.2021.e24
PDF
XML

References

United Nations Office On Drugs and Crime. World Drug Report 2016. New York: United Nations Office on Drugs and Crime. doi: 10.18356/603a2a94-en.

Degenhardt L, Larney S, Chan G, Dobbins T, Weier M, Roxburgh A et al. Estimating the number of regular and dependent methamphetamine users in Australia, 2002–2014. The Medical journal of Australia. 2016;204(4):153-6. doi: 10.5694/mja15.00671.

Yimsaard P, Maes MM, Verachai V, Kalayasiri R. Pattern of Methamphetamine Use and the Time Lag to Methamphetamine Dependence. Journal of Addiction Medicine. 2018;12(2):92-98. doi: 10.1097/ADM.0000000000000371.

AIHW. National Drug Strategy Household Survey 2019. Canberra, ACT: Australian Institute of Health and Welfare. doi: 10.25816/e42p-a447.

AIHW. National Drug Strategy Household Survey 2016. Canberra, ACT: Australian Institute of Health and Welfare. doi: 10.25816/5ec5bc1bed176.

Compton WM, Thomas YF, Stinson FS, Grant BF. Prevalence, correlates, disability, and comorbidity of DSM-IV drug abuse and dependence in the United States: results from the national epidemiologic survey on alcohol and related conditions. Arch Gen Psychiatry. 2007;64(5):566-76. doi: 10.1001/archpsyc.64.5.566.

Papamihali K, Collins D, Karamouzian M, Purssell R, Graham B, Buxton J. Crystal methamphetamine use in British Columbia, Canada: A cross-sectional study of people who access harm reduction services. PloS one. 2021;16(5):e0252090. doi: 10.1371/journal.pone.0252090.

Courtney KE, Ray LA. Methamphetamine: an update on epidemiology, pharmacology, clinical phenomenology, and treatment literature. Drug Alcohol Depend. 2014;143:11-21. doi: 10.1016/j.drugalcdep.2014.08.003.

Brecht M, O’Brien A, von Mayrhauser C, Anglin MD. Methamphetamine use behaviors and gender differences. Addictive Behaviors. 2004;29(1):89-106. doi: 10.1016/S0306-4603(03)00082-0.

He J, Xie Y, Tao J, Su H, Wu W, Zou S et al. Gender differences in socio-demographic and clinical characteristics of methamphetamine inpatients in a Chinese population. Drug Alcohol Depend. 2013;130(1-3):94-100. doi: 10.1016/j.drugalcdep.2012.10.014.

Hser YI, Evans E, Huang YC. Treatment outcomes among women and men methamphetamine abusers in California. J Subst Abuse Treat. 2005;28(1):77-85. doi: 10.1016/j.jsat.2004.10.009.

Mayo LM, Paul E, DeArcangelis J, Van Hedger K, de Wit H. Gender differences in the behavioral and subjective effects of methamphetamine in healthy humans. Psychopharmacology (Berl). 2019;236(8):2413-2423. doi: 10.1007/s00213-019-05276-2.

Rawson RA, Gonzales R, Obert JL, McCann MJ, Brethen P. Methamphetamine use among treatment-seeking adolescents in Southern California: participant characteristics and treatment response. J Subst Abuse Treat. 2005;29(2):67-74. doi: 10.1016/j.jsat.2005.04.001.

Spear LP. The adolescent brain and age-related behavioral manifestations. Neuroscience & Biobehavioral Reviews. 2000;24(4):417-463. doi: 10.1016/S0149-7634(00)00014-2.

Infurna RN, Spear LP. Developmental changes in amphetamine-induced taste aversions. Pharmacology, Biochemistry and Behavior. 1979;11(1):31-35. doi: 10.1016/0091-3057(79)90293-4.

Shram MJ, Funk D, Li Z, Le AD. Periadolescent and adult rats respond differently in tests measuring the rewarding and aversive effects of nicotine. Psychopharmacology (Berl). 2006;186(2):201-8. doi: 10.1007/s00213-006-0373-8.

Schramm-Sapyta NL, Morris RW, Kuhn CM. Adolescent rats are protected from the conditioned aversive properties of cocaine and lithium chloride. Pharmacol Biochem Behav. 2006;84(2):344-52. doi: 10.1016/j.pbb.2006.05.026.

Philpot RM, Badanich KA, Kirstein CL. Place conditioning: age-related changes in the rewarding and aversive effects of alcohol. Alcohol Clin Exp Res. 2003;27(4):593-9. doi: 10.1097/01.ALC.0000060530.71596.D1.

Wilmouth CE, Spear LP. Adolescent and adult rats' aversion to flavors previously paired with nicotine. Ann N Y Acad Sci. 2004;1021:462-4. doi: 10.1196/annals.1308.065.

Su ZI, Santoostaroam A, Wenzel J, Ettenberg A. On the persistence of cocaine-induced place preferences and aversions in rats. Psychopharmacology (Berl). 2013;229(1):115-23. doi: 10.1007/s00213-013-3086-9.

Anderson RI, Agoglia AE, Morales M, Varlinskaya EI, Spear LP. Stress, kappa manipulations, and aversive effects of ethanol in adolescent and adult male rats. Neuroscience. 2013;249:214-22. doi: 10.1016/j.neuroscience.2012.12.028.

Budzynska B, Polak P, Biala G. Effects of calcium channel antagonists on the motivational effects of nicotine and morphine in conditioned place aversion paradigm. Behav Brain Res. 2012;228(1):144-50. doi: 10.1016/j.bbr.2011.12.003.

Kim JH, Perry CJ, Ganella DE, Madsen HB. Postnatal development of neurotransmitter systems and their relevance to extinction of conditioned fear. Neurobiol Learn Mem. 2017;138:252-270. doi: 10.1016/j.nlm.2016.10.018.

Weickert CS, Webster MJ, Gondipalli P, Rothmond D, Fatula RJ, Herman MM et al. Postnatal alterations in dopaminergic markers in the human prefrontal cortex. NSC. 2007;144(3):1109-1119. doi: 10.1016/j.neuroscience.2006.10.009.

Rothmond DA, Weickert CS, Webster MJ. Developmental changes in human dopamine neurotransmission: cortical receptors and terminators. BMC Neuroscience. 2012;13(1):18. doi: 10.1186/1471-2202-13-18.

Caballero A, Granberg R, Tseng KY. Mechanisms contributing to prefrontal cortex maturation during adolescence. Neuroscience & Biobehavioral Reviews. 2016;70:4-12. doi: 10.1016/j.neubiorev.2016.05.013.

Luikinga SJ, Kim JH, Perry CJ. Developmental perspectives on methamphetamine abuse: Exploring adolescent vulnerabilities on brain and behavior. Prog Neuropsychopharmacol Biol Psychiatry. 2018;87(Pt A):78-84. doi: 10.1016/j.pnpbp.2017.11.010.

Cullity ER, Madsen HB, Perry CJ, Kim JH. Postnatal developmental trajectory of dopamine receptor 1 and 2 expression in cortical and striatal brain regions. Journal of Comparative Neurology. 2019;527(6):1039-1055. doi: 10.1002/cne.24574.

Cullity ER, Bjerke IE, Kjelsberg K, Leergaard TB, Kim JH. Distribution of dopamine 1 receptor positive neurons in the adult female mouse brain. EBRAINS. 2020; doi: 10.25493/5MXR-AW7.

Cullity ER, Bjerke IE, Kjelsberg K, Leergaard TB, Kim JH. Distribution of dopamine 1 receptor positive neurons in the adult male mouse brain. EBRAINS. 2020; doi: 10.25493/AVRZ-4JB.

Cullity ER, Bjerke IE, Kjelsberg K, Leergaard TB, Kim JH. Distribution of dopamine 1 receptor positive neurons in the late adolescent female mouse brain. EBRAINS. 2020; doi: 10.25493/31D4-SKG.

Cullity ER, Bjerke IE, Kjelsberg K, Leergaard TB, Kim JH. Distribution of dopamine 1 receptor positive neurons in the late adolescent male mouse brain. EBRAINS. 2020; doi: 10.25493/GVFP-10X.

Cullity ER, Bjerke IE, Kjelsberg K, Leergaard TB, Kim JH. Distribution of dopamine 2 receptor positive neurons in the adult female mouse brain. EBRAINS. 2020; doi: 10.25493/VTD0-D15.

Cullity ER, Bjerke IE, Kjelsberg K, Leergaard TB, Kim JH. Distribution of dopamine 2 receptor positive neurons in the adult male mouse brain. EBRAINS. 2020; doi: 10.25493/4DEB-5AJ.

Cullity ER, Bjerke IE, Kjelsberg K, Leergaard TB, Kim JH. Distribution of dopamine 2 receptor positive neurons in the late adolescent female mouse brain. EBRAINS. 2020; doi: 10.25493/JJYX-T5R.

Cullity ER, Bjerke IE, Kjelsberg K, Leergaard TB, Kim JH. Distribution of dopamine 2 receptor positive neurons in the late adolescent male mouse brain. EBRAINS. 2020; doi: 10.25493/ANPQ-05J.

Kebabian JW, Calne DB. Multiple receptors for dopamine. Nature. 1979;277(5692):93-6. doi: 10.1038/277093a0.

Hoffman DC, Beninger RJ. Selective D1 and D2 dopamine agonists produce opposing effects in place conditioning but not in conditioned taste aversion learning. Pharmacology, Biochemistry and Behavior. 1988;31(1):1-8. doi: 10.1016/0091-3057(88)90302-4.

White NM, Packard MG, Hiroi N. Place conditioning with dopamine D1 and D2 agonists injected peripherally or into nucleus accumbens. Psychopharmacology. 1991;103:271-276. doi: 10.1007/BF02244216.

Hoffman DC, Beninger RJ. The effects of selective dopamine D1 or D2 receptor antagonists on the establishment of agonist-induced place conditioning in rats. Pharmacol Biochem Behav. 1989;33(2):273-9. doi: 10.1016/0091-3057(89)90499-1.

Vinish M, Elnabawi A, Milstein JA, Burke JS, Kallevang JK, Turek KC et al. Olanzapine treatment of adolescent rats alters adult reward behaviour and nucleus accumbens function. Int J Neuropsychopharmacol. 2013;16(7):1599-609. doi: 10.1017/S1461145712001642.

Contreras M, Billeke P, Vicencio S, Madrid C, Perdomo G, González M et al. A role for the insular cortex in long-term memory for context-evoked drug craving in rats. Neuropsychopharmacology. 2012;37(9):2101-2108. doi: 10.1038/npp.2012.59.

Gong S, Zheng C, Doughty ML, Losos K, Didkovsky N, Schambra UB et al. A gene expression atlas of the central nervous system based on bacterial artificial chromosomes. Nature. 2003;425(6961):917-25. doi: 10.1038/nature02033.

Madsen HB, Kim JH. Ontogeny of memory: An update on 40 years of work on infantile amnesia. Behav Brain Res. 2016;298(Pt A):4-14. doi: 10.1016/j.bbr.2015.07.030.

Darke S, Kaye S, Torok M. Age-related patterns of drug use initiation among polydrug using regular psychostimulant users. Drug Alcohol Rev. 2012;31(6):784-9. doi: 10.1111/j.1465-3362.2012.00436.x.

Gaytan F, Morales C, Leon S, Heras V, Barroso A, Avendano MS et al. Development and validation of a method for precise dating of female puberty in laboratory rodents: The puberty ovarian maturation score (Pub-Score). Sci Rep. 2017;7:46381. doi: 10.1038/srep46381.

Nelson JF, Karelus K, Felicio LS, Johnson TE. Genetic influences on the timing of puberty in mice. Biol Reprod. 1990;42(4):649-55. doi: 10.1095/biolreprod42.4.649.

Tan OL, Fleming JS. Proliferating cell nuclear antigen immunoreactivity in the ovarian surface epithelium of mice of varying ages and total lifetime ovulation number following ovulation. Biol Reprod. 2004;71(5):1501-7. doi: 10.1095/biolreprod.104.030460.

Ekambaram G, Sampath Kumar SK, Joseph LD. Comparative Study on the Estimation of Estrous Cycle in Mice by Visual and Vaginal Lavage Method. J Clin Diagn Res. 2017;11(1):AC05-AC07. doi: 10.7860/JCDR/2017/23977.9148.

Deboer MD, Li Y. Puberty is delayed in male mice with dextran sodium sulfate colitis out of proportion to changes in food intake, body weight, and serum levels of leptin. Pediatr Res. 2011;69(1):34-9. doi: 10.1203/PDR.0b013e3181ffee6c.

Kim JH, Lavan D, Chen N, Flores C, Cooper H, Lawrence AJ. Netrin-1 receptor-deficient mice show age-specific impairment in drug-induced locomotor hyperactivity but still self-administer methamphetamine. Psychopharmacology (Berl). 2013;230(4):607-16. doi: 10.1007/s00213-013-3187-5.

Chesworth R, Brown RM, Kim JH, Ledent C, Lawrence AJ. Adenosine 2A receptors modulate reward behaviours for methamphetamine. Addiction biology. 2015;21(2):407-421. doi: 10.1111/adb.12225.

Vidal-Infer A, Roger-Sanchez C, Daza-Losada M, Aguilar MA, Minarro J, Rodriguez-Arias M. Role of the dopaminergic system in the acquisition, expression and reinstatement of MDMA-induced conditioned place preference in adolescent mice. PloS one. 2012;7(8):e43107. doi: 10.1371/journal.pone.0043107.

Kramer PF, Christensen CH, Hazelwood LA, Dobi A, Bock R, Sibley DR et al. Dopamine D2 receptor overexpression alters behavior and physiology in Drd2-EGFP mice. J Neurosci. 2011;31(1):126-32. doi: 10.1523/JNEUROSCI.4287-10.2011.

Nelson AB, Hang GB, Grueter BA, Pascoli V, Luscher C, Malenka RC et al. A Comparison of Striatal-Dependent Behaviors in Wild-Type and Hemizygous Drd1a and Drd2 BAC Transgenic Mice. Journal of Neuroscience. 2012;32(27):9119-9123. doi: 10.1523/JNEUROSCI.0224-12.2012.

Pandy V, Wai YC, Amira Roslan NF, Sajat A, Abdulla Jallb AH, Vijeepallam K. Methanolic extract of Morinda citrifolia Linn. unripe fruit attenuates methamphetamine-induced conditioned place preferences in mice. Biomed Pharmacother. 2018;107:368-373. doi: 10.1016/j.biopha.2018.08.008.

Chesworth R, Brown RM, Kim JH, Lawrence AJ. The metabotropic glutamate 5 receptor modulates extinction and reinstatement of methamphetamine-seeking in mice. PloS one. 2013;8(7):e68371. doi: 10.1371/journal.pone.0068371.

Brown RM, Short JL, Lawrence AJ. Identification of brain nuclei implicated in cocaine-primed reinstatement of conditioned place preference: a behaviour dissociable from sensitization. PLoS One. 2010;5(12):e15889. doi: 10.1371/journal.pone.0015889.

Su H, Zhu J, Chen Y, Zhao N, Han W, Dang Y et al. Roles of levo-tetrahydropalmatine in modulating methamphetamine reward behavior. Physiology & Behavior. 2013;118(C):195-200. doi: 10.1016/j.physbeh.2013.05.034.

Faul F, Erdfelder E, Lang A, Buchner A. G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior research methods. 2007;39(2):175-191. doi: 10.3758/BF03193146.

Tenk CM, Kavaliers M, Ossenkopp K. Dose response effects of lithium chloride on conditioned place aversions and locomotor activity in rats. European Journal of Pharmacology. 2005;515(1-3):117-127. doi: 10.1016/j.ejphar.2005.04.007.

Gore-Langton JK, Flax SM, Pomfrey RL, Wetzell BB, Riley AL. Measures of the aversive effects of drugs: A comparison of conditioned taste and place aversions. Pharmacol Biochem Behav. 2015;134(C):99-105. doi: 10.1016/j.pbb.2015.05.002.

Schindler CW, Bross JG, Thorndike EB. Gender differences in the behavioral effects of methamphetamine. European Journal of Pharmacology. 2002;442(3):231-235. doi: 10.1016/s0014-2999(02)01550-9.

Madsen HB, Guerin AA, Kim JH. Investigating the role of dopamine receptor- and parvalbumin-expressing cells in extinction of conditioned fear. Neurobiol Learn Mem. 2017;145:7-17. doi: 10.1016/j.nlm.2017.08.009.

Franklin KBJ, Paxinos G. The mouse brain in stereotaxic coordinates. Amsterdam; London: Elsevier Academic Press. OCLC: 845721906.

McHugh ML. Multiple comparison analysis testing in ANOVA. Biochemia Medica. 2011;21(3):203-209. doi: 10.11613/bm.2011.029.

Luikinga SJ, Perry CJ, Madsen HB, Lawrence AJ, Kim JH. Effects of Methamphetamine Exposure on Fear Learning and Memory in Adult and Adolescent Rats. Neurochem Res. 2019;44(9):2081-2091. doi: 10.1007/s11064-019-02845-x.

Anker JJ, Baron TR, Zlebnik NE, Carroll ME. Escalation of methamphetamine self-administration in adolescent and adult rats. Drug and Alcohol Dependence. 2012;124(1-2):149-153. doi: 10.1016/j.drugalcdep.2012.01.004.

Zakharova E, Leoni G, Kichko I, Izenwasser S. Differential effects of methamphetamine and cocaine on conditioned place preference and locomotor activity in adult and adolescent male rats. Behav Brain Res. 2009;198(1):45-50. doi: 10.1016/j.bbr.2008.10.019.

Zombeck JA, Gupta T, Rhodes JS. Evaluation of a pharmacokinetic hypothesis for reduced locomotor stimulation from methamphetamine and cocaine in adolescent versus adult male C57BL/6J mice. Psychopharmacology (Berl). 2009;201(4):589-99. doi: 10.1007/s00213-008-1327-0.

Xu P, Qiu Y, Zhang Y, Βai Y, Xu P, Liu Y et al. The Effects of 4-Methylethcathinone on Conditioned Place Preference, Locomotor Sensitization, and Anxiety-Like Behavior: A Comparison with Methamphetamine. The international journal of neuropsychopharmacology / official scientific journal of the Collegium Internationale Neuropsychopharmacologicum (CINP). 2016;19(4). doi: 10.1093/ijnp/pyv120.

Guerin AA, Nestler EJ, Berk M, Lawrence AJ, Rossell SL, Kim JH. Genetics of methamphetamine use disorder: A systematic review and meta-analyses of gene association studies. Neurosci Biobehav Rev. 2021;120:48-74. doi: 10.1016/j.neubiorev.2020.11.001.

Guerin AA, Bonomo Y, Lawrence AJ, Baune BT, Nestler EJ, Rossell SL et al. Cognition and Related Neural Findings on Methamphetamine Use Disorder: Insights and Treatment Implications From Schizophrenia Research. Front Psychiatry. 2019;10:880. doi: 10.3389/fpsyt.2019.00880.

Kim YT, Song HJ, Seo JH, Lee JJ, Lee J, Kwon DH et al. The differences in neural network activity between methamphetamine abusers and healthy subjects performing an emotion-matching task: functional MRI study. NMR Biomed. 2011;24(10):1392-400. doi: 10.1002/nbm.1702.

Brenhouse HC, Andersen SL. Delayed extinction and stronger reinstatement of cocaine conditioned place preference in adolescent rats, compared to adults. Behavioral neuroscience. 2008;122(2):460-465. doi: 10.1037/0735-7044.122.2.460.

Guerin AA, Zbukvic IC, Luikinga SJ, Drummond KD, Lawrence AJ, Madsen HB et al. Extinction and drug‐induced reinstatement of cocaine seeking following self‐administration or conditioned place preference in adolescent and adult rats. Developmental Psychobiology. 2020;5(12):1-13. doi: 10.1002/dev.22017.

Zbukvic IC, Kim JH. Divergent prefrontal dopaminergic mechanisms mediate drug- and fear-associated cue extinction during adolescence versus adulthood. Eur Neuropsychopharmacol. 2018;28(1):1-12. doi: 10.1016/j.euroneuro.2017.11.004.

Kim JH, Li S, Richardson R. Immunohistochemical analyses of long-term extinction of conditioned fear in adolescent rats. Cereb Cortex. 2011;21(3):530-8. doi: 10.1093/cercor/bhq116.

Pattwell SS, Duhoux S, Hartley CA, Johnson DC, Jing D, Elliott MD et al. Altered fear learning across development in both mouse and human. Proc Natl Acad Sci U S A. 2012;109(40):16318-23. doi: 10.1073/pnas.1206834109.

Ganella DE, Drummond KD, Ganella EP, Whittle S, Kim JH. Extinction of Conditioned Fear in Adolescents and Adults: A Human fMRI Study. Front Hum Neurosci. 2018;11:647. doi: 10.3389/fnhum.2017.00647.

Naneix F, Marchand AR, Pichon A, Pape JR, Coutureau E. Adolescent Stimulation of D2 Receptors Alters the Maturation of Dopamine-dependent Goal-Directed Behavior. Neuropsychopharmacology. 2013;38(8):1566-1574. doi: 10.1038/npp.2013.55.

Perreault ML, O'Dowd BF, George SR. Dopamine D₁-D₂ receptor heteromer regulates signaling cascades involved in addiction: potential relevance to adolescent drug susceptibility. Developmental neuroscience. 2014;36(3-4):287-296. doi: 10.1159/000360158.

Zbukvic IC, Ganella DE, Perry CJ, Madsen HB, Bye CR, Lawrence AJ et al. Role of Dopamine 2 Receptor in Impaired Drug-Cue Extinction in Adolescent Rats. Cereb Cortex. 2016;26(6):2895-904. doi: 10.1093/cercor/bhw051.

Cullity ER, Guérin AA, Madsen HB, Perry CJ, Kim JH. Dataset: Insular cortex dopamine 1 and 2 receptors in methamphetamine conditioned place preference and aversion: Age and sex differences. Zenodo. 2021; doi: 10.5281/zenodo.4983499.

Creative Commons Attribution License Logo

This work is licensed under a Creative Commons Attribution 4.0 International License.

Downloads

This is an archival static mirror of the journal website. For article statistics, please visit the main website.